29 research outputs found

    Dissolved organic matter quantity and quality in Lake Simcoe compared to two other large lakes in southern Ontario

    Get PDF
    Dissolved organic matter (DOM) is a critical component in ecosystem processes and is the largest pool of organic carbon (C) in aquatic environments. In this study, we investigated the variability in quantity and quality of DOM in 3 large lakes in southern Ontario. Water quality parameters were coupled with excitation emission fluorescence spectroscopy and absorption spectra to characterize the DOM and investigate the overarching factors controlling DOM dynamics. The results show that Lake Simcoe has higher dissolved organic carbon (DOC) concentrations than lakes Erie, Ontario, and Hamilton Harbour (an embayment in western Lake Ontario) and suggest that a DOM source independent of watershed inputs is likely an important contributor to the DOC in this system. Five components were identified through parallel factor analysis (PARAFAC), representative of both terrestrial and microbial origin. Their relative intensities in the 4 Lake Simcoe end-members allowed the identification of dominant DOM sources in our studied ecosystems. Lake Simcoe seems to have a similar contribution of agriculturally derived DOM to lakes Erie, Ontario, and Hamilton Harbour. Lake Ontario, including Hamilton Harbour had on average a larger input of DOM derived from wastewater treatment plant effluents. The seasonal patterns in the different optical characteristics of DOM in Lake Simcoe compared to other systems suggested that DOM qualitative transformations, be it through photooxidation or microbial degradation, are likely very important processes in this lake. The role of DOM in Lake Simcoe may have important ecological implications for the cycling of C and the oxygen regime of this lake.&nbsp

    Hyperspectral retrievals of phytoplankton absorption and chlorophyll-a in inland and nearshore coastal waters

    Get PDF
    Following more than two decades of research and developments made possible through various proof-of-concept hyperspectral remote sensing missions, it has been anticipated that hyperspectral imaging would enhance the accuracy of remotely sensed in-water products. This study investigates such expected improvements and demonstrates the utility of hyperspectral radiometric measurements for the retrieval of near-surface phytoplankton properties1, i.e., phytoplankton absorption spectra (aph) and biomass evaluated through examining the concentration of chlorophyll-a (Chla). Using hyperspectral data (409–800 nm at ~5 nm resolution) and a class of neural networks known as Mixture Density Networks (MDN) (Pahlevan et al., 2020), we show that the median error in aph retrievals is reduced two-to-three times (N = 722) compared to that from heritage ocean color algorithms. The median error associated with our aph retrieval across all the visible bands varies between 20 and 30%. Similarly, Chla retrievals exhibit significant improvements (i.e., more than two times; N = 1902), with respect to existing algorithms that rely on select spectral bands. Using an independent matchup dataset acquired near-concurrently with the acquisition of the Hyperspectral Imager for the Coastal Ocean (HICO) images, the models are found to perform well, but at reduced levels due to uncertainties in the atmospheric correction. The mapped spatial distribution of Chla maps and aph spectra for selected HICO swaths further solidify MDNs as promising machine-learning models that have the potential to generate highly accurate aquatic remote sensing products in inland and coastal waters. For aph retrieval to improve further, two immediate research avenues are recommended: a) the network architecture requires additional optimization to enable a simultaneous retrieval of multiple in-water parameters (e.g., aph, Chla, absorption by colored dissolved organic matter), and b) the training dataset should be extended to enhance model generalizability. This feasibility analysis using MDNs provides strong evidence that high-quality, global hyperspectral data will open new pathways toward a better understanding of biodiversity in aquatic ecosystems

    Robust algorithm for estimating total suspended solids (TSS) in inland and nearshore coastal waters

    Get PDF
    One of the challenging tasks in modern aquatic remote sensing is the retrieval of near-surface concentrations of Total Suspended Solids (TSS). This study aims to present a Statistical, inherent Optical property (IOP) -based, and muLti-conditional Inversion proceDure (SOLID) for enhanced retrievals of satellite-derived TSS under a wide range of in-water bio-optical conditions in rivers, lakes, estuaries, and coastal waters. In this study, using a large in situ database (N \u3e 3500), the SOLID model is devised using a three-step procedure: (a) water-type classification of the input remote sensing reflectance (Rrs), (b) retrieval of particulate backscattering (bbp) in the red or near-infrared (NIR) regions using semi-analytical, machine-learning, and empirical models, and (c) estimation of TSS from bbp via water-type-specific empirical models. Using an independent subset of our in situ data (N = 2729) with TSS ranging from 0.1 to 2626.8 [g/m3], the SOLID model is thoroughly examined and compared against several state-of-the-art algorithms (Miller and McKee, 2004; Nechad et al., 2010; Novoa et al., 2017; Ondrusek et al., 2012; Petus et al., 2010). We show that SOLID outperforms all the other models to varying degrees, i.e.,from 10 to \u3e100%, depending on the statistical attributes (e.g., global versus water-type-specific metrics). For demonstration purposes, the model is implemented for images acquired by the MultiSpectral Imager aboard Sentinel-2A/B over the Chesapeake Bay, San-Francisco-Bay-Delta Estuary, Lake Okeechobee, and Lake Taihu. To enable generating consistent, multimission TSS products, its performance is further extended to, and evaluated for, other missions, such as the Ocean and Land Color Instrument (OLCI), Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), and Operational Land Imager (OLI). Sensitivity analyses on uncertainties induced by the atmospheric correction indicate that 10% uncertainty in Rrs leads to \u3c20% uncertainty in TSS retrievals from SOLID. While this study suggests that SOLID has a potential for producing TSS products in global coastal and inland waters, our statistical analysis certainly verifies that there is still a need for improving retrievals across a wide spectrum of particle loads

    Impact of Spectral Resolution on Quantifying Cyanobacteria in Lakes and Reservoirs: A Machine-Learning Assessment

    Get PDF
    Cyanobacterial harmful algal blooms are an increasing threat to coastal and inland waters. These blooms can be detected using optical radiometers due to the presence of phycocyanin (PC) pigments. The spectral resolution of best-available multispectral sensors limits their ability to diagnostically detect PC in the presence of other photosynthetic pigments. To assess the role of spectral resolution in the determination of PC, a large ( N=905 ) database of colocated in situ radiometric spectra and PC are employed. We first examine the performance of selected widely used machine-learning (ML) models against that of benchmark algorithms for hyperspectral remote sensing reflectance ( Rrs ) spectra resampled to the spectral configuration of the Hyperspectral Imager for the Coastal Ocean (HICO) with a full-width at half-maximum (FWHM) of < 6 nm. Results show that the multilayer perceptron (MLP) neural network applied to HICO spectral configurations (median errors < 65%) outperforms other ML models. This model is subsequently applied to Rrs spectra resampled to the band configuration of existing satellite instruments and of the one proposed for the next Landsat sensor. These results confirm that employing MLP models to estimate PC from hyperspectral data delivers tangible improvements compared with retrievals from multispectral data and benchmark algorithms (with median errors between ∌73 % and 126%) and shows promise for developing a globally applicable cyanobacteria measurement approach

    ACIX-Aqua: A global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters

    Get PDF
    Atmospheric correction over inland and coastal waters is one of the major remaining challenges in aquatic remote sensing, often hindering the quantitative retrieval of biogeochemical variables and analysis of their spatial and temporal variability within aquatic environments. The Atmospheric Correction Intercomparison Exercise (ACIX-Aqua), a joint NASA – ESA activity, was initiated to enable a thorough evaluation of eight state-of-the-art atmospheric correction (AC) processors available for Landsat-8 and Sentinel-2 data processing. Over 1000 radiometric matchups from both freshwaters (rivers, lakes, reservoirs) and coastal waters were utilized to examine the quality of derived aquatic reflectances (̂ρw). This dataset originated from two sources: Data gathered from the international scientific community (henceforth called Community Validation Database, CVD), which captured predominantly inland water observations, and the Ocean Color component of AERONET measurements (AERONET-OC), representing primarily coastal ocean environments. This volume of data permitted the evaluation of the AC processors individually (using all the matchups) and comparatively (across seven different Optical Water Types, OWTs) using common matchups. We found that the performance of the AC processors differed for CVD and AERONET-OC matchups, likely reflecting inherent variability in aquatic and atmospheric properties between the two datasets. For the former, the median errors in ̂ρw(560) and ̂ρw(664) were found to range from 20 to 30% for best-performing processors. Using the AERONET-OC matchups, our performance assessments showed that median errors within the 15–30% range in these spectral bands may be achieved. The largest uncertainties were associated with the blue bands (25 to 60%) for best-performing processors considering both CVD and AERONET-OC assessments. We further assessed uncertainty propagation to the downstream products such as near-surface concentration of chlorophyll-a (Chla) and Total Suspended Solids (TSS). Using satellite matchups from the CVD along with in situ Chla and TSS, we found that 20–30% uncertainties in ̂ρw(490 ≀ λ ≀ 743 nm) yielded 25–70% uncertainties in derived Chla and TSS products for topperforming AC processors. We summarize our results using performance matrices guiding the satellite user community through the OWT-specific relative performance of AC processors. Our analysis stresses the need for better representation of aerosols, particularly absorbing ones, and improvements in corrections for sky- (or sun-) glint and adjacency effects, in order to achieve higher quality downstream products in freshwater and coastal ecosystems

    GLORIA - A globally representative hyperspectral in situ dataset for optical sensing of water quality

    Get PDF
    The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring.Additional co-authors: Courtney Di Vittorio, Nathan Drayson, Reagan M. Errera, Virginia Fernandez, Dariusz Ficek, CĂ©dric G. Fichot, Peter Gege, Claudia Giardino, Anatoly A. Gitelson, Steven R. Greb, Hayden Henderson, Hiroto Higa, Abolfazl Irani Rahaghi, CĂ©dric Jamet, Thomas Jordan, Kersti Kangro, Jeremy A. Kravitz, Arne S. Kristoffersen, Raphael Kudela, Lin Li, Martin Ligi, Hubert Loisel, Steven Lohrenz, Ronghua Ma, Daniel A. Maciel, Tim J. Malthus, Bunkei Matsushita, Mark Matthews, Camille Minaudo, Deepak R. Mishra, Sachidananda Mishra, Tim Moore, Wesley J. Moses, HĂ  Nguyễn, Evlyn M. L. M. Novo, StĂ©fani Novoa, Daniel Odermatt, David M. O’Donnell, Leif G. Olmanson, Michael Ondrusek, Natascha Oppelt, Sylvain Ouillon, Waterloo Pereira Filho, Stefan Plattner, Antonio Ruiz VerdĂș, Salem I. Salem, John F. Schalles, Stefan G. H. Simis, Eko Siswanto, Brandon Smith, Ian Somlai-Schweiger, Mariana A. Soppa, Elinor Tessin, Hendrik J. van der Woerd, Andrea Vander Woude, Ryan A. Vandermeulen, Vincent Vantrepotte, Marcel R. Wernand, Kyana Young & Linwei Yu

    GLORIA - A globally representative hyperspectral in situ dataset for optical sensing of water quality

    Get PDF
    The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring

    Optical types of inland and coastal waters

    Get PDF
    Inland and coastal waterbodies are critical components of the global biosphere. Timely monitoring is necessary to enhance our understanding of their functions, the drivers impacting on these functions and to deliver more effective management. The ability to observe waterbodies from space has led to Earth observation (EO) becoming established as an important source of information on water quality and ecosystem condition. However, progress toward a globally valid EO approach is still largely hampered by inconsistences over temporally and spatially variable in‐water optical conditions. In this study, a comprehensive dataset from more than 250 aquatic systems, representing a wide range of conditions, was analyzed in order to develop a typology of optical water types (OWTs) for inland and coastal waters. We introduce a novel approach for clustering in situ hyperspectral water reflectance measurements (n = 4045) from multiple sources based on a functional data analysis. The resulting classification algorithm identified 13 spectrally distinct clusters of measurements in inland waters, and a further nine clusters from the marine environment. The distinction and characterization of OWTs was supported by the availability of a wide range of coincident data on biogeochemical and inherent optical properties from inland waters. Phylogenetic trees based on the shapes of cluster means were constructed to identify similarities among the derived clusters with respect to spectral diversity. This typification provides a valuable framework for a globally applicable EO scheme and the design of future EO missions

    GLORIA - A globally representative hyperspectral in situ dataset for optical sensing of water quality

    Get PDF
    The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring
    corecore